GFZ German research centre for geo sciences

Atmospheric Model for precise GNSS Applications (AMG)

The Atmospheric Model for GNSS (the component which describes the propagation of the radio signals in the atmosphere) consists of a tropospheric and an ionospheric part.

Troposphere: The pressure, temperature and humidity fields are provided from a global Numerical Weather Model (NWM), the Global Forecast System (GFS) of the National Centers for Environmental Prediction (NCEP) (www.ncep.noaa.gov). We use a ray-trace algorithm (Zus et al., 2014) and compute station-specific zenith hydrostatic (wet) delays, derive the hydrostatic (wet) mapping function coefficients and the horizontal delay gradient components. In post-processing mode we use the NWM analysis whereas in real-time mode we use NWM short-range forecasts. On the importance of the tropospheric delay model in the GNSS analysis the reader is referred to Zus et al., 2021.

Ionosphere: The electron density field is provided from a climatological model, the latest version of the International Reference Ionosphere (IRI) (http://iri.gsfc.nasa.gov/), and Earth's magnetic field is provided from the 12th generation of the International Geomagnetic Reference Field (IGRF) (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). We use a ray-trace algorithm to derive ionospheric delay parameters which can then be used to perform higher-order ionospheric corrections in precise applications  (Zus et al., 2017).

Data availability: Tropospheric and ionospheric delay parameters derived for specific stations are available upon request.The GFZ-VMF1, which is a solution based on the Vienna Mapping Function 1 (VMF1) (http://vmf.geo.tuwien.ac.at/) concept and utilizing the reanalysis ERA5 (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) is available. A preliminary data set containing Higher-Order Ionospheric Corrections (HOIC) for any location near the Earth's surface (grid with a resolution  of 2.5° times 5°) is available too.

Source code: https://git-int.gfz-potsdam.de/balidak/dns (inside GFZ)

Contact: zusflo@gfz-potsdam.de

References:

Zus, F., Dick, G., Dousa, J., Heise, S., and Wickert, J.: The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model, Radio Sci., 49, 207–216, doi:10.1002/2013RS005280, 2014.

 

Zus, F., Z. Deng, and J. Wickert: The impact of higher-order ionospheric effects on estimated tropospheric parameters in Precise Point Positioning, Radio Sci., 52, doi:10.1002/2017RS006254, 2017.

Zus, F., Balidakis, K., Dick, G., Wilgan, K., and Wickert, J.: Impact of Tropospheric Mismodelling in GNSS Precise Point Positioning: A Simulation Study Utilizing Ray-Traced Tropospheric Delays from a High-Resolution NWM, Remote Sens, 13, 3944, doi.org/10.3390/rs13193944, 2021.

back to top of main content