GFZ German research centre for geo sciences

DOME - Dynamics of Ore Metals Enrichment (DFG-Priority Program SPP 2238)


Description:

The formation of economic ore deposits typically requires a 1000-fold enrichment of metals into concentrated ore bodies. The DFG-funded Priority Program "Dynamics of Ore Metals Enrichment" (DOME) aims to understand the fundamental processes involved so as to develop more efficient and sustainable ways to ensure metals supply in the future. Substitution and recycling play increasing roles in the “resource mix” but the near future will see growing demand for primary resources of many metals, particularly to support technologies needed for the energy transition. The projects combine case studies of ore formation in the field, laboratory experiments to constrain the physical and chemical properties relevant for metal transport and precipitation, and thermal-mechanical modelling to translate these results into testable geologic models (see https://www.uni-potsdam.de/en/spp2238/).

DOME is coordinated at the University of Potsdam by Prof. Max Wilke together with a committee of scientists from German universities (University of Freiburg and University of Münster) and the GFZ section 3.1 (Sarah Gleeson, Robert Trumbull, Philipp Weis), which is also involved in seven individual funded projects:

Description:

Ore metal enrichment in basin-scale hydrothermal systems results from a perfect convergence of chemical and physical processes on different temporal and spatial scales. These systems can only be quantitatively understood by observations and studies beyond the deposit scale. Numerical process models have the potential to identify first-order controls on ore formation and provide physical and chemical constraints on the feasibility and efficiency of hydrothermal systems to generate world-class deposits, which may help guiding future exploration. In this collaborative project, we will develop and apply a reactive transport model for ore formation in sedimentary basins, using the geochemical model GEMS3 and the fluid flow model CSMP++. With this coupled model for reactive transport, we will quantitatively investigate the respective roles of key parameters like fluid salinity, oxidation state, pH, metal and sulfur availability, basin-scale heat flux, topography, basin strata, pore space and permeable fluid pathways on the dynamics of ore metals enrichment.

Project details:

Duration: 2024 - 2027

Funding: DFG

PIs: Dr. Philipp Weis, Prof. Thomas Wagner (RWTH Aachen)

Link: https://www.uni-potsdam.de/en/spp2238/

Description:

Critical for understanding the formation of granite-related hydrothermal Sn-W deposits as well as deposits of critical metals like Li and Ta-Nb in pegmatites is the magmatic-hydrothermal transition, which is hard to define from the rock record. Theory predicts that boron isotopes will fractionate significantly between magma and fluid at the transition, and this isotopic shift may be recorded in the minerals like tourmaline and white mica, which are widespread and common in these kinds of deposits. If validated, this would provide a major contribution to understanding magmatic-hydrothermal ore formation but key information is missing: the B-isotope fractionation between granitic melts and the fluids derived from them. That is the goal of this project.

Project details:

Duration of project: 2020 - 2022

Funding: DFG

PIs: Dr. Robert Trumbull, Dr. Bernd Wunder (3.6), Prof. Max Wilke (University of Potsdam), Prof. Sandro Jahn (University of Cologne)

Link: https://www.uni-potsdam.de/en/spp2238/

Description:

Future exploration for mineral resources will target greater depths and submarine settings, which is costly and technically challenging. For this development, we need robust predictive models that can capture the first-order processes within entire ore-forming systems. Magmatic-hydrothermal ore deposits form our largest resources of Cu, Mo, Sn and W and are formed by fluids released from magmatic intrusions into a hydrothermal system within the country rock. The potential to form world-class deposits critically depends on cross-boundary fluid fluxes at this magmatic-hydrothermal interface, which is the key unknown in our current understanding of these deposits and can so far only be parameterized in numerical simulations. Capturing these interface processes requires a fundamentally new modelling approach with a continuum that extends beyond the roots of hydrothermal systems and bridges the gaps between fluid flow and magma dynamics. Furthermore, and very important for geological realism, the model simulates dynamic permeability changes and focused flow caused by fractures.

Project details:

Duration of project: 2021 - 2025

Funding: DFG

PI: Dr. Philipp Weis

Link: https://www.uni-potsdam.de/en/spp2238/

Beschreibung:

Die Anreicherung von Erzmetallen in hydrothermalen Systemen auf Beckenebene ist das Ergebnis einer perfekten Konvergenz chemischer und physikalischer Prozesse auf verschiedenen zeitlichen und räumlichen Ebenen. Diese Systeme können nur durch Beobachtungen und Studien jenseits des Lagerstättenmaßstabs quantitativ verstanden werden. Numerische Prozessmodelle haben das Potenzial, Kontrollen erster Ordnung für die Erzbildung zu identifizieren und physikalische und chemische Einschränkungen für die Durchführbarkeit und Effizienz hydrothermaler Systeme bei der Bildung von Lagerstätten von Weltrang zu liefern, die als Richtschnur für zukünftige Explorationen dienen können. In diesem Gemeinschaftsprojekt werden wir ein reaktives Transportmodell für die Erzbildung in Sedimentbecken entwickeln und anwenden, wobei wir das geochemische Modell GEMS3 und das Strömungsmodell CSMP++ verwenden. Mit diesem gekoppelten Modell für den reaktiven Transport werden wir die jeweilige Rolle von Schlüsselparametern wie Salzgehalt des Fluids, Oxidationszustand, pH-Wert, Metall- und Schwefelverfügbarkeit, Wärmefluss auf Beckenebene, Topografie, Beckenschichten, Porenraum und durchlässige Fluidpfade auf die Dynamik der Anreicherung von Erzmetallen quantitativ untersuchen.

Projektinformationen:

Projektlaufzeit: 2024 - 2027

Finanzierung: DFG

PIs: Dr. Philipp Weis, Prof. Thomas Wagner (RWTH Aachen)

Link: https://www.uni-potsdam.de/en/spp2238/

Project details

Duration of project: 2021 - 2027

Funding: DFG

Link: https://www.uni-potsdam.de/en/spp2238/

 

 

back to top of main content