VLBI-ART: VLBI Analysis in Real-Time
One of the main goals of the new VLBI system (VGOS, VLBI Geodetic Observing System) is to reduce the latency between observations and availability of the results. The project VLBI-ART contributes to this goal by considerably accelerating the VLBI analysis procedure on the base of an elaborate Kalman filter software solution, which represents a perfectly well-suited tool for analysing VLBI data in quasi real-time. The Kalman filter will be embedded in the GFZ version of developed Vienna VLBI Software (VieVS@GFZ) and it will be designed to work completely automated without any need for human interaction.
Numerous investigations with real and simulated data are to be performed in order to determine and optimise the performance of the software. Furthermore, it is intended to probe the promising possibility of including data from several other sensors in the Kalman filter, for example, tropospheric delays from water vapour radiometers, Earth rotation from ringlaser gyroscopes, tropospheric delays and EOP estimated using data from GNSS, or atmospheric angular momentum calculated from numerical weather prediction models. The automation of the data analysis will include routine removal of ambiguities as well as detection of clock breaks and data outliers.
References
Böhm, J., S. Böhm, T. Nilsson, A. Pany, L. Plank, H. Spicakova, K. Teke, and H. Schuh. The new Vienna VLBI software. In S. Kenyon, M. C. Pacino, and U. Marti, editors, IAG Scientific Assembly 2009, number 136 in International Association of Geodesy Symposia, pages 1007–1011, Buenos Aires, Argentina, 2012. Springer. doi:10.1007/978-3-642-20338-1_126.
Böhm, J., H. Krásná, S. Böhm, V. Choliy, A: Hellerschmied, A. Hofmeister, M. Karbon, D. Mayer, J. McCullum, M. Madzak, T. Nilsson, L. Plank, S. Shabala, B. Soja, J. Sun, and K. Teke. Vienna VLBI software: Current release and plans for the future. In D. Behrend, K. D. Baver, and K. Armstrong, editors, Proceedings of the Eight IVS General Meeting: VGOS: The New VLBI Network, pages 258–261, Shanghai, China, 2014. Science Press. Available from: ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2014/pdf/055_Bohm_etal.pdf.
Karbon, M., T. Nilsson, C. Tierno Ros, R. Heinkelmann, and H. Schuh. VLBI-Art: VLBI analysis in real-time. In N. Zubko and M. Poutanen, editors, Proceedings 21th Meeting of the European VLBI Group for Geodesy and Astrometry, pages 95–97, Espoo, Finland, 2013. Available from: http://evga.fgi.fi/sites/default/files/u3/Proceedings_EVGA2013.pdf.
Karbon, M., B. Soja, T. Nilsson, Z. Deng, R. Heinkelmann, and H. Schuh. Earth orientation parameters from VLBI determined with a Kalman filter. Geodesy and Geodynamics, 8(6):396–407, 2017. doi:10.1016/j.geog.2017.05.006.
Karbon, M., B. Soja, T. Nilsson, R. Heinkelmann, L. Liu, C. Lu, J.A. Mora-Diaz, V. Raposo-Pulido, M. Xu, and H. Schuh. ERP estimation using a Kalman filter in VLBI. In D. Behrend, K. D. Baver, and K. Armstrong, editors, Proceedings of the Eight IVS General Meeting: VGOS: The New VLBI Network, pages 298–301, Shanghai, China, 2014. Science Press. Available from: ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2014/pdf/064_Karbon_etal.pdf.
Nilsson, T., S. Glaser, M. Karbon, B. Soja, R. Heinkelmann, and H. Schuh. The GFZ-VLBI-TRF solution. In R. Haas and G. Elgered, editors, Proceedings of the 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, pages 257–260, Göteborg, Sweden, 2017. Available from: http://www.evga.org/files/2017EVGA_proc_Gothenburg.pdf.
Nilsson, T., R. Heinkelmann, S. Glaser, B. Soja, M. Karbon, and H. Schuh. Combination of common parameters for co-located VLBI antennas. In Proceedings of the 22nd European VLBI Group for Geodesy and Astronomy Working Meeting, pages 252–255, 2015. Available from: http://www.oan.es/raege/evga2015/EVGA2015_proceedings.pdf.
Nilsson, T., M. Karbon, and H. Schuh. A Kalman filter for combining high frequency Earth rotation parameters from VLBI and GNSS. In N. Zubko and M. Poutanen, editors, Proceedings 21th Meeting of the European VLBI Group for Geodesy and Astrometry, pages 117–120, Espoo, Finland, 2013. Available from: http://evga.fgi.fi/sites/default/files/u3/Proceedings_EVGA2013.pdf.
Nilsson, T., M. Karbon, B. Soja, S. Glaser, R. Heinkelmann, and H. Schuh. Simulations of near real-time EOP estimation from a future VGOS network. In D. Behrend, K. D. Baver, and K. Armstrong, editors, IVS 2016 General Meeting Proceedings ’New Horizons with VGOS’, NASA/CP-2016-219016, pages 208–212, Johannesburg, South Africa, 2016. Available from: ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2016/pdf/043_nilsson_etal.pdf.
Nilsson, T., M. Karbon, B. Soja, R. Heinkelmann, C. Lu, and H. Schuh. Atmospheric modeling for co-located VLBI antennas and twin telescopes. J. Geodesy, 89:655–665, 2015. doi:10.1007/s00190-015-0804-6.
Nilsson, T., M. Karbon, B. Soja, V. Raposo-Pulido, R. Heinkelmann, J. Mora Diaz, C. Lu, L. Liu, and H. Schuh. Rapid UT1 estimation by combining VLBI intensives with GNSS. In IAG 150 Years, Proceedings of the IAG Scientific Assembly 2013, volume 143 of IAG Symposia, pages 521–526, Potsdam, Germany, 2016. Springer. doi: 10.1007/1345_2015_105.
Nilsson, T., B. Soja, K. Balidakis, M. Karbon, R. Heinkelmann, Z. Deng, and H. Schuh. Improving the modeling of the atmospheric delay in the data analysis of the Intensive VLBI sessions and the impact on the UT1 estimates. J. Geodesy, 91(7):857–866, 2017. doi:10.1007/s00190-016-0985-7.
Nilsson, B. Soja, T., S. Glaser, K. Balidakis, M. Karbon, R. Heinkelmann, R. Gross, and H. Schuh. Comparison of a VLBI TRF solution based on Kalman filtering and recent ITRS realizations. In D. Behrend, K. D. Baver, and K. Armstrong, editors, IVS 2016 General Meeting Proceedings ’New Horizons with VGOS’, NASA/CP-2016-219016, pages 256–260, Johannesburg, South Africa, 2016. Available from: ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2016/pdf/052_soja_etal.pdf.
Nilsson, T., B. Soja, M. Karbon, R. Heinkelmann, and H. Schuh. Application of Kalman filtering in VLBI data analysis. Earth Planets Space, 67(136):1–9, 2015. doi.org/10.1186/s40623-015-0307-y
Nilsson, T., B. Soja, M. Karbon, R. Heinkelmann, and H. Schuh. Water vapor radiometer data in very long baseline interferometry data analysis. In J. T. Freymueller and L. Sánchez, editors, International Symposium on Earth and Environmental Sciences for Future Generations, volume 147 of IAG Symposia, pages 303–308. Springer, 2017. doi:10.1007/1345_2017_264.
Soja, B.. Anwendung eines Kalman-Filters in der Auswertung von VLBI-Daten, PhD Thesis, Scientific Technical Report STR ; 16/06, Deutsches GeoForschungsZentrum GFZ, Potsdam, 2016, doi:10.1007/1345_2015_80.
Soja, B., R. Gross, C. Jacobs, T. Chin, C. Abbondanza, M. Heflin, J. Parker and X. Wu, M. Karbon, T. Nilsson, R. Heinkelmann, and H. Schuh. A celestial reference frame based on Kalman filtering. In R. Haas and G. Elgered, editors, Proceedings of the 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, pages 152–156, Göteborg, Sweden, 2017. Available from: http://www.evga.org/files/2017EVGA_proc_Gothenburg.pdf.
Soja, B., M. Karbon, T. Nilsson, K. Balidakis, S. Glaser, R. Heinkelmann, and H. Schuh. Short-term station coordinate variations from Kalman filtering VLBI data. In Proceedings of the 22nd European VLBI Group for Geodesy and Astronomy Working Meeting, pages 172–176, 2015. Available from: http://www.oan.es/raege/evga2015/EVGA2015_proceedings.pdf.
Soja, B., T. Nilsson, K. Balidakis, S. Glaser, R. Heinkelmann, and H. Schuh. Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data. J. Geodesy, 90(12):1311–1327, 2016. doi:10.1007/s00190-016-0924-7.
Soja, B., T. Nilsson, M. Karbon, C. Lu, X. Li, K. Balidakis, J. Anderson, S. Glaser, L. Liu, J. Mora-Diaz, M. Xu, R. Heinkelmann, and H. Schuh. Comparison of tropospheric delays from gps and Kalman filtered VLBI data. In Proceedings of the 22nd European VLBI Group for Geodesy and Astronomy Working Meeting, pages 240–244, 2015. Available from: http://www.oan.es/raege/evga2015/EVGA2015_proceedings.pdf.
Soja, B., T. Nilsson, M. Karbon, F. Zus, G. Dick, Z. Deng, J. Wickert, R. Heinkelmann, and H. Schuh. Tropospheric delay determination by Kalman filtering VLBI data. Earth Planets Space, 67(144):1–16, 2015. doi.org/10.1186/s40623-015-0293-0