GFZ German research centre for geo sciences

ANTARCTIC-IMB

ANTARCTIC-IMB (The Antarctic Ice Sheet Mass Balance from Satellite Geodesy and Modeling) is a joint project between the Technical University of Dresden (TUD), the Alfred-Wegener-Institute (AWI) in Bremerhaven, the German Aerospace Center (DLR) in Oberpfaffenhofen and GFZ within the DFG Special Priority Program 1257 "Mass Transport and Mass Distribution in the Earth System".

The goal of the project is a new and comprehensive estimate of the ice mass balance of Antarctica and its major ice drainage basins and the corresponding sea level contribution with unprecedented accuracy. The observational fundament are time-variable regional gravity field models based on GRACE and GOCE data (provided by GFZ), surface elevation and elevation change data from ICESat and ERS-1/ERS-2/Envisat/TanDEM-X, surface flow data from satellite synthetic aperture radar (SAR) and feature tracking as well as GPS observations in order to measure crustal deformations. For snow accumulation determination, microwave remote sensing will be applied. Data of recent satellite missions like GOCE, TerraSAR-X/TanDEM-X and CryoSat-2 will significantly improve and extend the anticipated results. With a higher temporal and spatial resolution we will especially investigate the most dynamic parts of the Antarctic ice sheet: The Antarctic Peninsula, West Antarctica and the grounding zone.

Within the last project phase we will also focus on Antarctica as a key element in the global water cycle. Therefore, in addition to the mass balance the ice mass flux across the grounding line as an important quantity in this context will be estimated. The results will be published in summer 2013 in

Flechtner, F., Fagiolini, E., Gruber, Ch., Dietrich, R., Ewert, H., Rosenau, R., Eineder, M., Floricioiu, D., Abdel Jaber, W., Dierking, W., Linow, S., Groh, A. (2013). Mass, volume and velocity of the Antarctic ice sheet: present-day changes and error effects. Special Issue DFG SPP "Mass Transports and Mass Distribution in System Earth"

back to top of main content