Helmholtz-Zentrum Deutsches Geoforschungszentrum

SFB 1294 Data Assimilation

Dieser Inhalt ist zur Zeit nur in englischer Sprache verfügbar.

Novel methods for the 3D reconstruction of the dynamic evolution of the Van Allen belts using multiple satellite measurements (project B06 of Collaborative Research Centre 1294 “Data Assimilation: The seamless integration of data and models”)

Projektbeschreibung

In this project, we combine state-of-the-art partial differential equation-based models of the inner magnetosphere Versatile Electron Radiation Belt (VERB-3D) with newly developed data assimilation methods to reconstruct the dynamics of the inner magnetospheric radiation, utilizing observations from various orbits. We will explore the applicability of the developed methodology to the modeling of the variations of the thermal energy plasma environment in the ionosphere and plasmasphere. We will explore how the observations from the operating Swarm mission of the European Space Agency (ESA) can be used to correct imperfect models of plasma density.

Laufzeit

2017/2 – 2021/1

Zuwendungsgeber

DFG - Deutsche Forschungsgemeinschaft.

Projektverantwortliche

Prof. Dr. Yuri Shprits (GFZ, Section 2.8 Magnetospheric Physics; University of Potsdam, Institute of Physics and Astronomy).

Prof. Dr. Claudia Stolle (GFZ, Section 2.3 Geomagnetism; University of Potsdam, Institute of Mathematics).

Projektwebseite

www.uni-potsdam.de/de/sfb1294.html

Kooperationen

University of Potsdam; Humboldt University Berlin; Technical University Berlin; Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences; Max Planck Institute of Molecular Plant Physiology; Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin.

Methoden und Geräte

The Versatile Electron Radiation Belt Code; Kalman filter; data assimilation. Internal GFZ computing servers.

Publikationen/Ergebnisse

  • Zhelavskaya, I. S., Vasile, R., Shprits, Y. Y., Stolle, C., Matzka, J. ( 2019), Systematic Analysis of Machine Learning and Feature Selection Techniques for Prediction of the Kp Index. Space Weather, 17, accepted manuscript, https://doi.org/10.1029/2019SW002271
  • Aseev, N. A., Shprits, Y. Y., Drozdov, A. Y., Kellerman, A. C., Usanova, M. E., Wang, D., & Zhelavskaya, I. S. (2017). Signatures of ultrarelativistic electron loss in the heart of the outer radiation belt measured by Van Allen Probes. Journal of Geophysical Research: Space Physics, 122. https://doi.org/10.1002/2017JA024485


zurück nach oben zum Hauptinhalt